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discharge. Three different machine learning classifiers (generalized linear

_ _ Fig 3. Ranking of top 50 features for TBI combined model (left) and stroke combined model (right). Negative SHAP value
model, XGBoost, and random forest) were trained using extracted features.

association with favorable outcomes and positive SHAP associated with unfavorable outcomes. A number of OOR MV variables
and respiratory physiologic variables contributed to the prediction of outcome. Duration of exposure to OOR tidal volume, PEEP
and plateau pressure were identified as top contributors with longer OOR durations predictive of unfavorable outcome.
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